- 1. In the space below, draw (separately):
 - (a) a trans fat
 - (b) a soap
 - (c) a prostaglandin
 - (d) a wax

2. Are the following molecules terpenes?

3. Draw the following monosaccharides in their pyranose ring form. Draw the beta form in each case.

4.	What are the four forces that hold a protein together?
5.	List all the ways a protein could be denatured.
6.	There are four levels of protein structure: primary, secondary, tertiary, and quaternary. What does each refer to?
7.	Consider the topic of reducing sugars. (a) Are monosaccharides reducing sugars?
	(b) Are disaccharides?
	(c) Are polysaccharides?
	(d) What is an easy test to determine whether or not a sugar is a reducing sugar?
	(e) What color change occurs with this test?

- 1. In the space below, draw (separately):
 - (a) a trans fat
 - (b) a soap
 - (c) a prostaglandin
 - (d) a wax

2. Are the following molecules terpenes?

3. Draw the following monosaccharides in their pyranose ring form. Draw the beta form in each case.

5. List all the ways a protein could be denatured.

Redir yets
Rundon
Hear mehl,
Me. Warren Aj. The
Non-pola solumb
heit
OH chings.

6. There are four levels of protein structure: primary, secondary, tertiary, and quaternary. What does each refer to?

1° - seguena of sum acros
2' - prope, he of draw (e.g. &-helix)
3° - ovall shipe of prohe
6' - shipe relative to other protess.

- 7. Consider the topic of reducing sugars.
 - (a) Are monosaccharides reducing sugars?
 - (b) Are disaccharides?
 - (c) Are polysaccharides? No
 - (d) What is an easy test to determine whether or not a sugar is a reducing sugar?
 - (e) What color change occurs with this test?

blue to red

1. Draw the following sugars in their pyranose ring form. Be sure to draw both in their beta form.

- 2. In the space below, draw (separately)
 - (a) a fatty acid
 - (b) a steroid that is also a terpene
 - (c) a prostaglandin that has no chiral carbons
 - (d) a phospholipid

3. Identify the type of bridges in the dissacharides below:

	4.	There are four ways that we discussed to inhibit proteins. List the four below, and describe each one.
	5.	Define the following: (a) Turnover Number
		(b) Active Site (c) Mutaroration
	6.	(d) Reducing Sugar How would you make the polypeptide His-Gly-Trp starting from the individual amino acids.
·	7.	How would you separate three amino acids with isoelectric points of 6, 8, and 10? Be specific about where each amino acid ends up.

1. Draw the following sugars in their pyranose ring form. Be sure to draw both in their beta form.

- 2. In the space below, draw (separately)
 - (a) a fatty acid
 - (b) a steroid that is also a terpene
 - (c) a prostaglandin that has no chiral carbons
 - (d) a phospholipid

3. Identify the type of bridges in the dissacharides below:

F. 1,39

4. There are four ways that we discussed to inhibit proteins. List the four below, and describe each one.
Competitive lahibita: "Dumny" moleculo, compete of substate for eatine site.
Allosteric Control: Repliter, ten pretens on or off by enterny secondy 51/k.
Zynoges'. Preters, en not completed until needed.
Co-Fiche: The wholeh and Co.
Co-Fictor: The introdute or densil of a my un-sumoraced poten of a protein causes protein to step or stoot.
5. Define the following: (a) Turnover Number # - f s-bstarts processed per sec-1.
(b) Active Site Spenticuly shoped county where contribute of substances (c) Mutaroration Equilibrate behave 7, B, and straight chan forms.
(d) Reducing Sugar Menosaechanke Mot the Benefits blue and
 How would you make the polypeptide His-Gly-Trp starting from the individual amino acids.
Hrs Box Box - Hrs occ Box - Hrs - Gy - OCH3 How Box - Hrs - Gy Gy CHUT Gy-OCH3 Low Box - Hrs - Gy
the TRA BOX-HID-GLY Prp-OCH; CTC Trp-OCH, CHM Trp
7. How would you separate three amino acids with isoelectric points of 6, 8, and 10? Be specific about where each amino acid ends up.
Set pH of better to 8.
"8" is 2-16m, in indle of jet.
e/" + electric.
"6" is anson — greet to the electricale. "16" is cation, greet — electricale.

1. Draw the following monosaccharides as pyranose rings.

2. In the space below, draw (separately) an oil, a prostaglandin, a wax, and a detergent, each with NO chiral carbons.

3. Draw a steroid that is also a terpene.

4. Construct Pro-Ala-Gly-Ser from the individual amino acids.

 (a) As it looks out of solution (b) As it looks dissolved in an acidic solution (c) As it looks dissolved in a basic solution (d) As it looks dissolved in a solution whose pH is equivalent to the amino acid's isoelectric point.
For a hexose aldose, which numbered carbon (more than one answer may be needed)
(a) Is never found in a bridge?(b) Must be accompanied by an alpha or beta in a bridge?(c) Is not chiral?(d) Determines whether it is a D sugar or an L sugar?
There are seven standard ways of denaturing a protein. What are they?
Explain the concept of allosteric control.
What is the difference between the so-called Lock-and-Key Model and the Induced Fit Model for protein shape?
). What ions are typically found in hard and soft water?

1. Draw the following monosaccharides as pyranose rings.

2. In the space below, draw (separately) an oil, a prostaglandin, a wax, and a detergent, each with NO chiral carbons.

3. Draw a steroid that is also a terpene.

4. Construct Pro-Ala-Gly-Ser from the individual amino acids.

Pro Boc, Bor-Pro DCC, BOC-Pro-Alg-OCH, His Algorian Algorian Algorian Boc-Gly - Ser-OCH, TFA

Ser-OCH, Ser-OCH, Ser-OCH, TFA

5. Draw a typical amino acid...